Search results for "carnot groups"

showing 10 items of 11 documents

Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups

2020

We prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi's rectifiability Theorem holds, we provide a lower bound for the $\Gamma$-liminf of the rescaled energy in terms of the horizontal perimeter.

Class (set theory)Pure mathematicsControl and OptimizationCarnot groups calibrations nonlocal perimeters/ Γ-convergence sets of finite perimeter rectifiabilityMathematics::Analysis of PDEssets of finite perimetervariaatiolaskentaComputer Science::Computational Geometry01 natural sciencesUpper and lower boundsdifferentiaaligeometriasymbols.namesakeMathematics - Analysis of PDEs510 MathematicsMathematics - Metric GeometryComputer Science::Logic in Computer ScienceConvergence (routing)FOS: MathematicsMathematics::Metric Geometry0101 mathematicscalibrationsMathematicsnonlocal perimeters010102 general mathematicsrectifiabilityryhmäteoriaMetric Geometry (math.MG)matemaattinen optimointi010101 applied mathematicsComputational MathematicsΓ-convergenceΓ-convergenceCarnot groupsControl and Systems EngineeringsymbolsCarnot cycleAnalysis of PDEs (math.AP)ESAIM: Control, Optimisation and Calculus of Variations
researchProduct

Remarks about the Besicovitch Covering Property in Carnot groups of step 3 and higher

2016

International audience

Pure mathematicsProperty (philosophy)Applied MathematicsGeneral Mathematicsta111010102 general mathematics[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA]16. Peace & justiceHomogeneous quasi-distances01 natural sciencesCarnot groups; Covering theorems; Homogeneous quasi-distances; Mathematics (all); Applied Mathematics010305 fluids & plasmasCombinatoricssymbols.namesakeCarnot groupsCovering theorems0103 physical sciencessymbolsMathematics (all)[MATH]Mathematics [math]0101 mathematicsCarnot cycle[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]ComputingMilieux_MISCELLANEOUSMathematicsProceedings of the American Mathematical Society
researchProduct

Carleman estimates for sub-Laplacians on Carnot groups

2022

In this note, we establish a new Carleman estimate with singular weights for the sub-Laplacian on a Carnot group $\mathbb G$ for functions satisfying the discrepancy assumption in (2.16) below. We use such an estimate to derive a sharp vanishing order estimate for solutions to stationary Schr\"odinger equations.

Mathematics - Analysis of PDEsCarnot groupsMathematics::Analysis of PDEsFOS: MathematicsMathematics::Spectral TheoryCarleman estimateunique continuationAnalysis of PDEs (math.AP)
researchProduct

A metric characterization of Carnot groups

2013

We give a short axiomatic introduction to Carnot groups and their subRiemannian and subFinsler geometry. We explain how such spaces can be metrically described as exactly those proper geodesic spaces that admit dilations and are isometrically homogeneous.

Pure mathematicsGeodesicGeneral MathematicsApplied MathematicsMathematical analysisMetric Geometry (math.MG)Characterization (mathematics)symbols.namesakeMathematics - Metric GeometryHomogeneousCarnot groupsMetric (mathematics)symbolsFOS: MathematicsMathematics (all)Mathematics::Metric GeometryMathematics::Differential GeometrySubRiemannian geometryCarnot cycleCarnot groups; SubRiemannian geometry; Mathematics (all); Applied MathematicsAxiomMathematics
researchProduct

Area of intrinsic graphs and coarea formula in Carnot Groups

2020

AbstractWe consider submanifolds of sub-Riemannian Carnot groups with intrinsic $$C^1$$ C 1 regularity ($$C^1_H$$ C H 1 ). Our first main result is an area formula for $$C^1_H$$ C H 1 intrinsic graphs; as an application, we deduce density properties for Hausdorff measures on rectifiable sets. Our second main result is a coarea formula for slicing $$C^1_H$$ C H 1 submanifolds into level sets of a $$C^1_H$$ C H 1 function.

Mathematics - Differential GeometrySubmanifoldsGeneral MathematicsCarnot groups Area formula Coarea formula Hausdorff measures SubmanifoldsryhmäteoriaCoarea formulaMetric Geometry (math.MG)Area formulaHausdorff measuressubmanifoldsdifferentiaaligeometriacoarea formulaMathematics - Metric GeometryDifferential Geometry (math.DG)Mathematics - Classical Analysis and ODEsCarnot groupsClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometryarea formulamittateoriaMathematics::Differential Geometry53C17 28A75 22E30
researchProduct

Pauls rectifiable and purely Pauls unrectifiable smooth hypersurfaces

2020

This paper is related to the problem of finding a good notion of rectifiability in sub-Riemannian geometry. In particular, we study which kind of results can be expected for smooth hypersurfaces in Carnot groups. Our main contribution will be a consequence of the following result: there exists a -hypersurface without characteristic points that has uncountably many pairwise non-isomorphic tangent groups on every positive-measure subset. The example is found in a Carnot group of topological dimension 8, it has Hausdorff dimension 12 and so we use on it the Hausdorff measure . As a consequence, we show that any Lipschitz map defined on a subset of a Carnot group of Hausdorff dimension 12, with…

codimension-one rectifiabilitysmooth hypersurface1ryhmäteoriaIntrinsic Lipschitz graphIntrinsic rectifiable setsubmanifoldsdifferentiaaligeometriaIntrinsic Cintrinsic Lipschitz graphCarnot groupsSmooth hypersurfaceMathematics::Metric Geometryintrinsic rectifiable setmittateoriaCodimension-one rectifiabilityCarnot groups; Codimension-one rectifiability; Intrinsic C; 1; submanifolds; Intrinsic Lipschitz graph; Intrinsic rectifiable set; Smooth hypersurface
researchProduct

Extremal polynomials in stratified groups

2018

We introduce a family of extremal polynomials associated with the prolongation of a stratified nilpotent Lie algebra. These polynomials are related to a new algebraic characterization of abnormal subriemannian geodesics in stratified nilpotent Lie groups. They satisfy a set of remarkable structure relations that are used to integrate the adjoint equations.

Statistics and Probabilityextremal polynomialsMathematics - Differential GeometryPure mathematicsGeodesicStructure (category theory)Group Theory (math.GR)Characterization (mathematics)algebra01 natural sciencesdifferentiaaligeometriaMathematics - Analysis of PDEsMathematics - Metric Geometry53C17FOS: Mathematics0101 mathematicsAlgebraic numberMathematics - Differential Geometry; Mathematics - Differential Geometry; Mathematics - Analysis of PDEs; Mathematics - Group Theory; Mathematics - Metric Geometry; Mathematics - Optimization and Control; 53C17; 49K30; 17B70Mathematics - Optimization and ControlMathematics010102 general mathematicsStatisticsta111polynomitProlongation53C17 49K30 17B70Lie groupMetric Geometry (math.MG)abnormal extremals010101 applied mathematicsNilpotent Lie algebraNilpotentsub-Riemannian geometryabnormal extremals extremal polynomials Carnot groups sub-Riemannian geometryAbnormal extremals; Carnot groups; Extremal polynomials; Sub-Riemannian geometry; Analysis; Statistics and Probability; Geometry and Topology; Statistics Probability and UncertaintyDifferential Geometry (math.DG)Optimization and Control (math.OC)Carnot groups17B70Probability and UncertaintyGeometry and TopologyStatistics Probability and UncertaintyMathematics - Group TheoryAnalysisAnalysis of PDEs (math.AP)Mathematics - Differential Geometry; Mathematics - Differential Geometry; Mathematics - Analysis of PDEs; Mathematics - Group Theory; Mathematics - Metric Geometry; Mathematics - Optimization and Control; 53C17 49K30 17B7049K30
researchProduct

A Cornucopia of Carnot groups in Low Dimensions

2022

Abstract Stratified groups are those simply connected Lie groups whose Lie algebras admit a derivation for which the eigenspace with eigenvalue 1 is Lie generating. When a stratified group is equipped with a left-invariant path distance that is homogeneous with respect to the automorphisms induced by the derivation, this metric space is known as Carnot group. Carnot groups appear in several mathematical contexts. To understand their algebraic structure, it is useful to study some examples explicitly. In this work, we provide a list of low-dimensional stratified groups, express their Lie product, and present a basis of left-invariant vector fields, together with their respective left-invaria…

Mathematics - Differential GeometryApplied Mathematicsnilpotent Lie algebrasLien ryhmätfree nilpotent groupsharmoninen analyysistratified groupsdifferentiaaligeometria510 MathematicsDifferential Geometry (math.DG)Carnot groupsFOS: Mathematicsexponential coordinatesGeometry and Topologyassociated Carnot-graded Lie algebra53C17 43A80 22E25 22F30 14M17Analysis
researchProduct

Convex functions on Carnot Groups

2007

We consider the definition and regularity properties of convex functions in Carnot groups. We show that various notions of convexity in the subelliptic setting that have appeared in the literature are equivalent. Our point of view is based on thinking of convex functions as subsolutions of homogeneous elliptic equations.

Convex analysisPure mathematicsCarnot groupsubelliptic equations.49L25Mathematics::Complex VariablesGeneral MathematicsMathematical analysissubelliptic equationsMathematics::Analysis of PDEsHorizontal convexityviscosity convexity35J70Convexitysymbols.namesakeCarnot groupsHomogeneous35J67Convex optimizationsymbolsPoint (geometry)Carnot cycleConvex function22E30Mathematics
researchProduct

A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries

2017

AbstractCarnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups together with several remarks.We consider them as special cases of graded groups and as homogeneous metric spaces.We discuss the regularity of isometries in the general case of Carnot-Carathéodory spaces and of nilpotent metric Lie groups.

Pure mathematicsmetric groupssub-finsler geometryengineering.material01 natural sciencesdifferentiaaligeometriasymbols.namesakesub-Finsler geometryMathematics::Metric Geometry0101 mathematics22f3014m17MathematicsPrimer (paint)QA299.6-433homogeneous groupshomogeneous spacesApplied Mathematics010102 general mathematics05 social sciencesryhmäteorianilpotent groupsCarnot groups; homogeneous groups; homogeneous spaces; metric groups; nilpotent groups; sub-Finsler geometry; sub-Riemannian geometry; Analysis; Geometry and Topology; Applied Mathematicssub-riemannian geometrysub-Riemannian geometry43a8053c17Carnot groupscarnot groupsengineeringsymbols22e25Geometry and Topology0509 other social sciences050904 information & library sciencesCarnot cycleAnalysisAnalysis and Geometry in Metric Spaces
researchProduct